
International Journal of Dynamics and Control (2023) 11:411–427
https://doi.org/10.1007/s40435-022-00982-w

Third wave of COVID-19: mathematical model with optimal control
strategy for reducing the disease burden in Nigeria

B. I. Omede1,4 · U. B. Odionyenma2 · A. A. Ibrahim3 · Bolarinwa Bolaji1,4

Received: 15 January 2022 / Revised: 17 May 2022 / Accepted: 23 May 2022 / Published online: 23 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The study of COVID-19 pandemic which paralyzed global economy of countries is a crucial research area for effective
future planning against other epidemics. Unfortunately, we now have variants of the disease resulting to what is now known
as waves of the pandemic. Several mathematical models have been developed to study this disease. While recent models
incorporated control measures, others are without optimal control measures or demographic parameters. In this study, we
propose a deterministic compartmental epidemiological model to study the transmission dynamic of the spread of the third
wave of the pandemic in Nigeria, andwe incorporated optimal control measures as strategies to reduce the burden of the deadly
disease. Specifically, we investigated the transmission dynamics of COVID-19 model without demographic features. We then
conducted theoretical analysis of the model with and without optimal control strategy. In the model without optimal control,
we computed the reproduction number, an epidemiological threshold useful for bringing the third wave of the pandemic under
check in Nigeria, and we proofed the disease stability and conducted sensitivity analysis in order to identify parameters that
can impact the reproduction number tremendously. In a similar reasoning, for the model with control strategy, we check the
necessary condition for the model. To validate our theoretical analyses, we illustrated the applications of the proposed model
using COVID-19 data for Nigeria for a period when the country was under the yoke of the third wave of the disease. The
data were then fitted to the model, and we derived a predictive tool toward making a forecast for the cumulative number of
cases of infection, cumulative number of active cases and the peak of the third wave of the pandemic. From the simulations,
it was observed that the presence of optimal control parameters leads to significant impact on the reduction of the spread
of the disease. However, it was discovered that the success of the control of the disease relies on the proper and effective
implementation of the optimal control strategies efficiently and adequately.
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1 Introduction

The COVID-19 pandemic was first reported in Wuhan, in
December 2019, with more than 70,000 cases of infection
and 1,800 deaths within the first 50 days of the epidemic
[1, 2]. As of July 30, 2021, there has been 196,553,009
confirmed cases of the pandemic with 4,200,412 confirmed
deaths worldwide [3]. Some of the symptoms of the COVID-
19 infection includes: difficulty in breathing, dry cough, fever
and general tiredness [4]. According to clinical evidence as
revealed by medical experts, the incubation period of the dis-
ease is between 2 and 14 days. During the incubation period,
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infected persons may be asymptomatic, yet capable of trans-
mitting the virus to others [4]. Since the first wave of the
pandemic, there have been other waves (in some countries)
due to genetic mutation of the disease, thereby developing
different variants. The World Health Organization (WHO)
in collaboration with experts has been monitoring the evolu-
tion of the disease. The various variants have been classified
as variants of concern (VOC) and variants of interest (VOI).
Some of the designated VOC includes alpha, beta, gamma
and delta, and that of VOI includes eta, iota, kappa and
lambda [3].

As the pandemic is far from ending anytime soon, various
vaccines have been developed across the globe. With 3, 839,
816, 037 vaccine doses administered globally [3], the third
wave of the disease is witnessing little mortality rate. Nigeria
with a population of around 206 million [5], with 178, 508
total number of COVID-19 infections [6], received approx-
imately 8,000,000 doses of vaccine as of August 10, 2021.
Just like several other countries are witnessing the third wave
of the pandemic, Nigeria is also witnessing the third wave,
and the Nigerian government, the Nigerian center for disease
control (NCDC), in collaboration with WHO must increase
its vaccination rate, for effective control of the spread of the
disease.

To address COVID-19 pandemic, several mathematical
approaches including Refs. [7–13] have been established.
Reference [14] established a primer for COVID-19 mathe-
matical model formulation, theoretical analysis and numeri-
cal simulations. Their model was then used to gain insights
into transmission dynamics of the disease in the USA.
Reference [15] extended a model by incorporating three
parameters: use of face mask, regular washing of hands with
hand sanitizer and maintenance of minimum social distanc-
ing, into their models. They corroborated their theoretical
analysis with numerical simulations and proposed a control
strategy on how COVID-19 disease can be eradicated. Ref-
erence [1] explored and applied a linear regression method
on the mathematical model of COVID-19 in order to pre-
dict the early stage of the disease. Reference [16] established
a biology-based mathematical framework to better under-
stand clinical heterogeneity with the best treatment. Their
model shows that it can be used to understand transmission
dynamics of infected individuals. Reference [17] studied how
COVID-19 has varied over time, by incorporating a stochas-
tic model with data from Wuhan and international reported
cases with origin from Wuhan. Reference [18] established
systems of differential equations for COVID-19 analysis
through a coupled system. They forecasted the peak of the
pandemic in some cities using varying parameters. Reference
[19] suggested a mathematical approach of the possibility of
infection from dead to living humans and the potential effects
of lockdown.

Consequently, in this study, we proposed mathematical
model to study the transmission dynamics of COVID-19
without demographic features, i.e., birth and natural death.
Demographic parameters can be excluded when investigat-
ing the dynamics of an epidemic that is occurring within a
few weeks or months (see [20, 21]). We then reformulated
themodel by incorporating some optimal control parameters,
and we conducted the theoretical analysis of the model with
and without optimal control strategy. In the model without
optimal control, we analyzed the disease stability and sensi-
tivity analysis in order to identify parameters that can impact
the reproduction number significantly. As for the model with
control strategy, we check the necessary conditions for the
model. We corroborated our theoretical findings for both
models with numerical simulations.

The rest of the paper is structured as follows: Sects. 2–4
describe the formulation, theoretical insights and numerical
simulations of the model without optimal control. The model
with optimal control strategy and its theoretical analysis is
established in Sect. 5, and Sect. 6 presents conclusion for this
work.

2 Formulation of model

In this work, formulating a deterministic model to gain
insight into the transmission dynamics of COVID-19without
demographic features such as birth and natural death, as in
Refs. [20, 21], is our concern. The total human population at
time t , denoted by N (t), is divided into eight mutually exclu-
sive compartments of: susceptible humans S(t), exposed
humans E(t), quarantined humans Q(t), undetected asymp-
tomatic infectious humans A(t), undetected symptomatic
infectious humans I (t), undetected symptomatic infectious
humans under self-medication M(t), detected and hospital-
ized infectious humans (via testing) IH (t) and recovered
humans R(t), so that we have:

N (t) � S(t) + E(t) + Q(t) + A(t) + I (t)

+ M(t) + IH (t) + R(t),

It is important to state that in the model, infected humans
that are detected and hospitalized are treated and carefully
handled in accordance with the standard procedure and
COVID-19 guidelines.

Those who are vaccinated in the susceptible class do so
at the rate v, the rate of compliance to wearing of face mask,
washing of hands and keeping of social distance are ρ1, ρ2
and τ1, respectively, and the force of infection for acquiring
the infection is given by λ � β(1−ρ1)(1−ρ2)(1−τ1)(c1A+I+c2M)

N ,
while those who progressed from exposed class to quaran-
tine class and Asymptomatic class do so at the rate α and σ ,
respectively. Furthermore, κ and (1 − κ) are the fractions of
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those who are undetected but asymptomatically infected and
those undetected but symptomatically infected, respectively.
Quarantined humans who do not develop symptoms and are
not infected that progress to susceptible class again do so at
the rate μ, while recovery rate of undetected asymptomatic
(symptomatic) infectious humans due to strong immune
system takes place at the rate εA(εI ), respectively, while
recovery rate of humans under self-medication.in their class
takes place at rate εM . Detection rate (via testing) for the
undetected asymptomatic infectious class and sensitization
rate on the danger of self-medication take place at the rate
ω and φ, respectively. Progression rate from M class to IH
class due to severity of COVID-19 in humans under self-
medication takes place at rate θ . Disease-induced death rate
of undetected symptomatic infectious humans hospitalized
detected infectious humans and self-medicated humans takes
place at the rate δI , δH , δM , respectively.

Consequently, the COVID-19 model is given by the fol-
lowing deterministic system of nonlinear differential equa-
tions:

dS

dt
� −β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− vS + μQ,

dE

dt
� β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− (α + σ)E ,

dQ

dt
� αE − (η + μ)Q,

d A

dt
� kσ E − (ω + εA)A,

d I

dt
� (1 − k)σ E − (q + δI + εI )I ,

dM

dt
� (1 − τ2φ)q I − (θ + δM + εM )M ,

d IH
dt

� ηQ + ωA + τ2φq I + θM − (γ + δH )IH ,

dR

dt
� εA A + εI I + εMM + γ IH + vS, (1)

The associated state variables and parameters are
described in Table 1, and a flow diagram of the model is
depicted in Fig. 1.

Some of the main assumptions made in the formulation
of the third wave of COVID-19 model (1) are as itemized
below:

(i) Natural recovery can occur perhaps due to strong
immune systems of humans [21].

(ii) Self-medication increases the number of infections
[20].

(iii) The population mixed homogeneously.

Table 1 Description of State Variables and parameters

Variable Interpretation

S Group of susceptible humans

E Group of Exposed humans

Q Group of Quarantined humans

A Group of Undetected asymptomatic infectious humans

I Group of Undetected symptomatic infectious humans

M Group of Undetected symptomatic infectious humans
under self-medication

IH Group of Detected and hospitalized infectious humans
(via testing)

R Group of Recovered humans

Parameter Interpretation

β Effective contact rate

ρ1 Rate of compliance to wearing of Face mask

ρ2 Rate of compliance to the use of hand sanitizer

τ1 Rate of compliance to social distancing

v Vaccination rate

α Exposed humans that are quarantined (via
contact tracing)

μ Quarantined humans who do not develop
symptoms and are not infected that progressed
to susceptible class again

c1 Modification parameter that accounts for a
reduced transmission from A class

c2 Modification parameter that accounts for
increased transmission from M class

σ Progression rate from exposed state to
infectious state

k Fraction of new infectious humans that is
asymptomatic

εA(εI ) Recovery rate of undetected asymptomatic
(symptomatic) infectious humans due to
strong immune system

εM Recovery rate of humans under self-medication

δI , δH , δM Disease-induced death rate of undetected
symptomatic infectious humans, hospitalized
detected infectious humans and
self-medicated humans, respectively

θ Progression rate from M class to IH class due to
severity of COVID-19 in humans under
self-medication

φ Sensitization rate on the danger of
self-medication

ω Detection rate (via testing) for the undetected
asymptomatic infectious class

q Transition rate from undetected symptomatic
infectious class

η Progression rate from quarantined class to
hospitalize detected infectious humans
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Table 1 (continued)

Parameter Interpretation

γ Recovery rate of detected and hospitalized
infectious humans due to treatment

τ2 Fraction of undetected symptomatic infectious
humans that adhered that adhered strictly to
COVID-19 safety protocols and avoided
self-medication

3 Theoretical analysis of themodel

In this section, we compute the reproduction number and
prove theoretically the disease stability in its free state, and
carry out sensitivity analysis of the parameters.

3.1 Basic property

It is necessary to prove that all state variable of the COVID-
19 model (1) are nonnegative for all time (t), for the model
to be epidemiologically and mathematically well posed in a
feasible region D given by:

D �
{
(S, E , Q, A, I , M , IR , R) ∈ �8

+ :

(S + E + Q + I + M + IR + R) ≤ N
}

What thismeans is thatweneed to show that the solution of
the system of nonlinear differential equations in the COVID-
19 model with positive initial data will remain nonnegative
for all time (t) when t ≥ 0. This can be done as:

N (t) � {(S(0), E(0), Q(0), A(0), I (0), M(0),

×IR(0), R(0)) ≥ 0} ∈ �8
+.

Theorem 1. Let the initial data for the model (1) be: S(t) >

0, E(t) > 0, Q(t) > 0, A(t) > 0, I (t) > 0, M(t) > 0,
IR(t) > 0 and R(t) > 0; then, the solutions:

(S(t), E(t), Q(t), A(t), I (t), M(t), IR(t), R(t))

of themodel (1)with initial positive data, will remain positive
for all time t > 0.

Proof. Note that initially,

S(t) + E(t) + Q(t) + A(t) + I (t) + M(t)

+ IR(t) + R(t) � N (t) (2)

Thus, at any time t, S(t) ≤ N (t), E(t) ≤ N (t), Q(t) ≤
N (t), A(t) ≤ N (t), I (t) ≤ N (t), M(t) ≤ N (t), IR(t) ≤
N (t), R(t) ≤ N (t) so that fromfirst equation inmodel (1), by

Fig. 1 A flow chart of COVID-19
model with λ �
β(1−ρ1)(1−ρ2)(1−τ1)(c1A+I+c2M)

N
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putting λ � β(1−ρ1)(1−ρ2)(1−τ1)(c1A+I+c2M)
N in it, we obtain:

dS

dt
� −λS − vS + μQ

≥ −λS − vS

≥ −βS − vS

≥ −(β + v)S

From here, it is clear that S(t) ≥ S(0)e−(β+v)t > 0, for
t ≥ 0 and S > 0. By using similar approach, it can be shown
that E(t) > 0, Q(t) > 0, A(t) > 0, I (t) > 0, M(t) > 0,
IR(t) > 0 and R(t) > 0, respectively. Hence, the solution
of the model (1) remains nonnegative for all nonnegative
initial conditions.

Lemma 1. The solutions of the proposed system (1) are fea-
sible for all t > 0, if they enter the invariant region D, given
by:

D �
{
(S, E , Q, A, I , M , IH , R) ∈ R8

+ : S > 0, E > 0,

× Q > 0, A > 0, I > 0, IH > 0, R > 0, N ≤ π

μ

}

(3)

Proof : By adding all the equations in the model (1), we
have:

dN

dt
� −μN − δI − δM − δH

� −μN − (δI + δM + δH ),

From which it follows that (since the state variables and
parameters of the model are nonnegative)

dN

dt
≤ −μN

Thus, dN
dt < 0, whenever N (t) > π/μ; furthermore,

dN
dt > 0 whenever N (t) ≤ π/μ. Hence, since it follows
from the right-hand side of the inequality that dNdt is bounded

by −μN , a standard comparison theorem [22] can be used
to show that:

N (t) ≤ N (0)e−μt +
π

μ

(
1 − e−μt) (4)

If N (0) ≤ π
μ
, then N (t) ≤ π

μ
. Thus, the region D is a

positively invariant set under the flow described by themodel
(1). Hence, it is sufficient to consider the dynamics of the
model (1) in the region D. Thus, in this region, the model can
be considered as been epidemiologically andmathematically
well posed [23].

3.1.1 Local asymptotic stability of the disease-free
equilibrium of the model

The COVID-19 model (1) has a continuum of disease-free
equilibria (DFE), given by:

ε0 � (
S∗, E∗, Q∗, A∗, I ∗, M∗, I ∗

H , R
∗)

� (
N (0) − R∗, 0, 0, 0, 0, 0, 0, R∗) (5)

where N (0) is the initial total size of the population, 0 <

S∗ ≤ N (0),0 ≤ R∗ < N (0) and 0 < S∗ + R∗ ≤ N (0).

The basic reproduction number The basic reproductive
number R0 [23] is a tool that determine the potential spread
of the disease in a population. In a nutshell,R0 is a thresh-
old parameter that help describes the stability of the DFE of
the model corresponding to the peak and final size of a pan-
demic. According to Ref. [24], it is “the expected number of
secondary cases of infection which would occur due to a pri-
mary case in a completely susceptible population.” It is an
important parameter that governs the spread of a disease. The
reproductive number (R0) can be computed using the next
generation operator method described in [25]. The matrices
F and V , for the new infection and the remaining transition
terms, respectively, for the model are:

F �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 β(1 − ρ1)(1 − ρ2)(1 − τ1)c1 β(1 − ρ1)(1 − ρ2)(1 − τ1) β(1 − ρ1)(1 − ρ2)(1 − τ1)c2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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And

V �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(α + σ) 0 0 0 0 0
−α (η + μ) 0 0 0 0
−kσ 0 (ω + εA) 0 0 0

−(1 − k)σ 0 0 (q + δI + εI ) 0 0
0 0 0 −(1 − τ2φ)q (θ + δM + εM ) 0
0 −η −ω −τ2φq −θ (γ + δH )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Hence, it follows from [26] that, R0 � ρ
(
FV−1

)
, whereρ

is the spectral radius or largest absolute value or modulus (in
the complex case) of the eigenvalues of

(
FV−1

)
. Therefore,

R0 � β(1 − ρ1)(1 − ρ2)(1 − τ1)

×
[

c1kσ

(α + σ)(ω + εA)
+

(1 − k)σ

(α + σ)(q + δI + εI )

+
c2(1 − k)σ (1 − τ2φ)q

(α + σ)(q + δI + εI )(θ + δM + εM )

]
(6)

Theorem 2. The DFE of model (1) is locally asymptoti-
cally stable (LAS) if R0 < 1 and unstable if R0 > 1.

Epidemiologically, Theorem 2 implies that a small inflow
of COVID-19 infected individuals in the population will not
cause a COVID-19 outbreak if R0 < 1. It is pertinent to note
that this result is determined by the initial sizes of the infected
individuals in the population. To ensure that COVID-19 elim-
ination is independent of the initial sizes of the infected
individuals in the population, it is necessary to show that
the DFE is globally asymptotically stable (GAS).

3.1.2 Global asymptotic stability of the DFE of the model (1)

To examine the global stability of the COVID-19 model (1)
at DFE, we consider the following theorem.

Theorem 3. The DFE of the COVID-19 model (1) is GAS if
R0 ≤ 1, otherwise it will be unstable.

Proof :We consider Lyapunov function as follow

G �
(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)
E +

c1
B3

A

+

(
c2B6 + B7

B5B7

)
I +

c2
B7

M (7)

where B1 � α + σ ,B2 � μ + η,B3 � ω + εA,B4 �
(1 − k)σ ,B5 � q + δI + εI , B6 � (1 − τ2φ)q, B7 �
θ + δM + εM and B8 � γ + δH .

With Lyapunov derivatives.

Ġ �
(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)
Ė +

c1
B3

Ȧ

+

(
c2B6 + B7

B5B7

)
İ +

c2
B7

Ṁ

Ġ �
(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)

×
(

β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− B1E

)

+
c1
B3

(kσ E − B3A) +

(
c2B6 + B7

B5B7

)

× (B4E − B5 I ) +
c2
B7

(B6 I − B7M)

Ġ �
(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)

×
(

β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N

)

− c1A − I − c2M

Note that S(t) ≤ N (t) in the Region D for all t > 0, so

Ġ ≤ (c1A + I + c2M)β(1 − ρ1)(1 − ρ2)(1 − τ1)

×
(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)
− (c1A + I + c2M)

Ġ ≤ (c1A + I + c2M)(β(1 − ρ1)(1 − ρ2)(1 − τ1)(
c1kσ

B1B3
+

B4

B1B5
+

c2B4B6

B1B5B7

)
− 1

)

Ġ ≤ (c1A + I + c2M)(R0 − 1) (8)

Since all the model parameters are nonnegative, it fol-
lows that Ġ ≤ 0 for R0 ≤ 1 with Ġ � 0 if and only if
Q � 0, E � 0, A � 0, I � 0, M � 0 and IH � 0.
Hence, G is a Lyapunov function for the model (1). There-
fore, by the LaSalle’s invariance principle [22], the DFE of
the COVID-19 model (1) is globally asymptotically stable
whenever R0 ≤ 1.
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3.1.3 Sensitivity analysis

To determine parameters with more significant contribution
to the COVID-19 transmission, we carried out sensitiv-
ity analysis on the parameters of the model, by following
approach inRefs. [27, 28]. This technique establish a formula
to determine the sensitivity index of all the basic parameters
as follows.

Definition 4. The normalized forward sensitivity index of a
variable, g, that depends differentially on a parameter, p, is
defined as

�g
p � ∂g

∂p
× p

g
(9)

so that the analytical expression for the sensitivity of the
reproduction number (R0) with respect to parameter ′ p′ is
given by:

�R0
p � ∂R0

∂p
× p

R0
(10)

Therefore, we compute the sensitivity index of R0 to the
following basic parameters associated with the reproduction
number using (10).

Here

R0 � β(1 − ρ1)(1 − ρ2)(1 − τ1)

×
[

c1kσ

(α + σ)(ω + εA)
+

(1 − k)σ

(α + σ)(q + δI + εI )

+
c2(1 − k)σ (1 − τ2φ)q

(α + σ)(q + δI + εI )(θ + δM + εM )

]

With

�R0
β � ∂R0

∂β
× β

R0
� 1,

�R0
ρ1

� ∂R0

∂ρ1
× ρ1

R0
� − ρ1

1 − ρ1
� −0.1111,

�R0
ρ2

� ∂R0

∂ρ2
× ρ2

R0
� − ρ2

1 − ρ2
� −0.25,

�R0
τ1

� ∂R0

∂τ1
× τ1

R0
� − τ1

1 − τ1
� −0.25,

�R0
k � kσc1(q + δI + εI )(θ + δM + εM ) − kσ(ω + εA)((θ + δM + εM ) + (1 − τ2φ)qc2)

kσc1(q + δI + εI )(θ + δM + εM ) + (1 − k)σ (ω + εA)((θ + δM + εM ) + (1 − τ2φ)qc2)
� −0.1976,

�R0
c1 � kσc1(q + δI + εI )(θ + δM + εM )

kσc1(q + δI + εI )(θ + δM + εM ) + (1 − k)σ (ω + εA)((θ + δM + εM ) + (1 − τ2φ)qc2)
� 0.4010,

�R0
c2 � (1 − k)σ (1 − τ2φ)q(ω + εA)c2

kσc1(q + δI + εI )(θ + δM + εM ) + (1 − k)σ (ω + εA)((θ + δM + εM ) + (1 − τ2φ)qc2)
� 0.0195,

Similarly, we do this for the remaining basic parameters
that makeup the basic reproduction number.

Interpretation of sensitivity indices: The sensitivity
indices of the reproduction number with respect to basic
parameters are found in Table 2 and in Fig. 2.

From the sensitivity indices, parameters with positive
indices shows high impact on the burden of the disease
in the community if their values are increasing. Similarly,
parameters in which their sensitivity indices are negative
have an effect of minimizing the burden of the disease in
the community as their values increase while the others are
constant. Consequently, as their values increase, the repro-
duction number decreases, this leads to the minimization of
the endemicity of the disease in the community.

From the results of sensitivity analysis above, observe that
parameters with high negative indices are � , ϕ, τ2 and εM
which are: detection rate via testing for undetected asymp-
tomatic infectious individuals, sensitization rate on danger of
self-medication, fraction of undetected symptomatic infec-
tious humans that adhered to COVID-19 safety protocols
and avoided self-medication and recovery rate of those under
self-medication, respectively. These are the top parameters
that drives significantly the dynamics of the spread of the
disease. Consequently, to control the spread of the disease,
these are the top parameters to be effectively and adequately
targeted by policy makers such that everything that should
be done to keep their sensitivity index negative will have to
be done for effective control of the disease, this means that
detection rate via testing must be made higher, more people
must be enlightened on the danger of self-medication and
encouraged to be observing the COVID-19 safety protocols:
wearing of facemasks always while in the public, washing of
hands regularly with soaps and hand sanitizers, keeping of
minimum social distances and early detection of those that
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Table 2 Values of parameters in
the model (1) Parameters Range Baseline value (source) Sensitivity indices

β – 0.4 (Fitted) 1

ρ1 0–1 0.1 (Ref. [5]) − 0.1111

ρ2 0–1 0.2 (Ref. [21]) − 0.25

τ1 0–1 0.2 (Ref. [21]) − 0.25

τ2 0–1 0.0135 (Ref. [21]) − 2.6263 × 10−6

q – 0.04 (Fitted) − 0.1015

σ 0–1 1/5.2 (Ref. [22]) 0.4263

c1 0–1 0.5 (Ref. [24]) 0.4010

c2 0–1 0.4341 (Assumed) 0.0195

α 0–1 1/7 (Estimated) − 0.4263

η – 0.514 (Fitted) –

θ – 0.164 (Fitted) − 0.0062

μ 0–1 0.025 (Assumed) –

ν 0–1 0.1582 (Ref. [10]) –

φ 0–1 0.01 (Assumed) − 2.6263 × 10−6

ω – 2.2719 × 10−11(Fitted) − 6.3754 × 10−11

γ
[ 1
30 ,

1
3

]
1/15 (Ref. [24, 34]) –

δI 0.001–0.1 0.015 (Ref. [35]) − 0.3175

δM 0–1 0.21 (Assumed) − 0.0079

δH 0.001–0.1 0.015 (Ref. [35]) –

εA 0–1 1/7 (Ref. [36, 37]) − 0.4010

εI 0–1 1/7 (Ref. [36, 37]) − 3.0248

εM 0–1 1/7 (Ref. [36, 37]) − 0.0054

k 0–1 0.5 (Ref. [24]) − 0.1976

Fig. 2 Sensitivity index of R0
against some parameters
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Fig. 3 Number of active cases in Nigeria

are infected with the virus such that the recovery rate of those
under self-medication must be made higher.

4 Simulations, results and discussion

In this section, the third wave of COVID-19 model (1)
is simulated numerically using the parameter estimates in
Table 2 in order to illustrate some of the theoretical results
of the study. We estimated the parameters in the model
by fitting the model with the daily number of reported
cases and the number of active cases in Nigeria as obtained
from NCDC [6]. The total population of Nigeria is esti-
mated to be 206 million [5]. Therefore, the initial conditions
of the state variables used for the model fitting as of
July 9, 2021 is given as follows: S(0) � 206,000,000,
E(0) � 200000,Q(0) � 7000,A(0) � 30000,I (0) �
150000,M(0) � 50000,IH (0) � 1719,R(0) � 164415.

We fit our model (1) to the cumulative number of active
COVID-19 cases. Fitting is used to estimate the effective con-
tact rate (β), progression rate (η) from Q(t) class to IH (t)
class, detection rate for undetected asymptomatic infectious
individuals (ω) and progression rate (θ) from M(t) class
to IH (t) class. The model fitting was performed using the
fmincon Algorithm in MATLAB. The model fitting was
implemented for an epidemic period starting from July 9,
2021, to September 17, 2021, a period when the third wave
of the pandemic pervades the air. Vaccination was intro-
duced and actively carried out by NPHCDA [29] in Nigeria,
i.e., from March 23, 2021 till date. We present the num-
ber of active COVID-19 cases and its projections in Figs. 3
and 4, respectively. Figure 4 forecasts the probable cases
of COVID-19 in Nigeria for a short term only, as the federal
government’s (FG) COVID-19 policies changes from time to
time.TheFG’s dynamic policieswould lead to corresponding
changes in associated parameters of the COVID-19 model.
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Fig. 4 Projections for the number of active cases in Nigeria

From the real data (see Fig. 3) that after September 17, 2021,
we projected around 800 cases after 60 days.

Figure 5 depicts the effect of varying values of φ on
the number of active COVID-19 cases and human under
self-medications, respectively. In both Fig. 5a, b, as φ

increases, the number of active cases and human under
self-medications decreases faster. Figure 5a shows that as
policy makers increase the sensitization rate on the danger
of self-medication, the number of active cases decreases
over time. Intuitively, as more and more individuals are
sensitized on the danger of self-medication, the number of
COVID-19 active cases will reduce. Self-medication can
be dangerous as people with expert knowledge of the virus
tends to use drugs that can worsen the infection or even lead
to COVID-19 death. Similarly, in Fig. 5b, as φ increases, the
number of humans under self-medications decreases faster.
This corroborates Fig. 5a, as policy makers increase the sen-
sitization rate on the danger of self-medication, the number
of people on self-medication reduces. This is because when
people are aware of the dangers of self-medication, they are
likely to consult a medical expert for advice. Sensitizing the
population on the danger of self-medication will not only
curb the incidence of self-medication, it will also reduce
the number of active cases of COVID-19 infection. If the
infected people get proper and expert advice on medication,
it will certainly lead to recovery from the virus, thereby,
reducing the number of active cases of infection.

Figure 6 depicts the effect of varying values of ω on
the number of active COVID-19 cases. As ω increases,
the number of active cases decreases slower within the
first 50 days. In reality, some cases of COVID-19 patients
are asymptomatic in nature. As the detection (testing) rate
for the undetected asymptomatic infectious class increases,
more cases are detected, thereby, leading to increase in the
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(a) Active cases against time

(b) Humans under self-medication against time
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Fig. 5 Effect of φ on the number of active cases and humans under self-medication

number of active cases. This is necessary since the goal of
every nation is to eradicate the virus, people need to get
tested, especially the undetected asymptomatic group. When

the undetected asymptomatic class becomes detected, they
ultimately get treated, leading to potential recovery from the
disease.
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Fig. 6 Effect of ω on the number of active cases

5 Optimal control strategy to reducing
the disease burden

The term "optimal control strategy" refers to a measure that
has been used to procure optimal approaches to be adopted
against the transmission dynamics of contagious illnesses
using various scientific methods. It has undoubtedly aided in
the discovery of optimal strategies to help effectively control
the spread of dangerous communicable diseases. Finding an
approach that reduces the number of affected people as well
as the associated costs is critical. As a result, we introduce
and focus on the two-time varying controls: (v(t) and φ(t)),
which represent the vaccination rate and rate of sensitization
on the danger of self-medication, respectively. Using this
control, the COVID-19 model (1) with optimal control now
becomes:

dS

dt
� −β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− v(t)S + μQ,

dE

dt
� β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− (α + σ)E ,

dQ

dt
� αE − (η + μ)Q,

d A

dt
� kσ E − (ω + εA)A,

d I

dt
� (1 − k)σ E − (q + δI + εI )I ,

dM

dt
� (1 − τ2φ(t))q I − (θ + δM + εM )M ,

d IH
dt

� ηQ + ωA + τ2φ(t)q I + θM − (γ + δH )IH ,

dR

dt
� εA A + εI I + εMM + γ IH + v(t)S, (11)

Therefore, we examine the optimal control problem in
order to minimize the objective functional. Following [30],
we establish the objective functional as follows:

J [ν, φ] �
∫ t f

0

[
w1A + w2 I + w3M +

1

2

×
[
w4ν

2(t) + w5φ
2(t)

]]
dt (12)

Here, the parameterswi , (i � 1, 2, 3, 4, 5) are theweight
factors to help balance each term in the integrand in (10), so
that none of the terms dominate. The terms in the integrand
in (12) are explained as follows:

(i) The term w1A +w2 I +w3M denotes expense of mon-
itoring infected people at all stages.

(ii) The term w4v
2(t) denotes the expense of the vaccina-

tion program at the time t .
(iii) The term w5φ

2(t) denotes the expense associated with
the public health education awareness campaign to edu-
cate the public on the danger of self-medication.

The aim is to minimize the overall number of individuals
in identified infectious classes while also keeping the cost
associated with the controls (v(t) and φ(t)) to a minimum.
The goal is to find an optimal control (v(t), φ∗(t)), such that:

J
[
v∗, φ∗] � min

v,φ∈�
J [v, φ] (13)

where � � {(
v(t)∗, φ(t)∗

) ∈ L1
(
0, t f

) × L1
(
0, t f

)|a1
≤ v ≤ b1, a2 ≤ φ ≤ b2 }.

5.1 Theoretical analysis of optimal control

To determine the required conditions that an optimal control
must satisfy, we use Pontryagin’s maximum principle (Pon-
tryagin [31]). By applying this technique, Eqs. (11) and (12)
becomes a problem of minimizing point-wise Hamiltonian
(H) with respect to the control pair v(t) and φ(t). The
Hamiltonian is given by:

H � w1A + w2 I + w3M +
1

2

[
w4v

2(t) + w5φ
2(t)

]

+ λ1

[
−β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− v(t)S + μQ

]

+ λ2

[
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A + I + c2M)S

N
− (α + σ)E

]

+ λ3[αE − (η + μ)Q]

+ λ4[kσ E − (ω + εA)A] + λ5[(1 − k)σ E − (q + δI + εI )I ]

+ λ6[(1 − τ2φ(t))q I − (θ + δM + εM )M]

+ λ7
[
ηQ + ωA + τ2φ(t)q I + θM − (γ + δH )IH

]

+ λ8
[
εA A + εI I + εMM + γ IH + v(t)S

]
(14)
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where λi , (i � 1, 2, 3, ..., 8) are the adjoint functions asso-
ciated with the state variables of the model (11), by applying
the Pontryagin’s maximum principle [32] and the existence
result for the optimal control pair v(t) and φ(t), the fol-
lowing theorem is obtained.

Theorem 5. There exist an optimal control
pair v∗(t) and φ∗(t) and corresponding solution(
S∗, E∗, Q∗, A∗, I ∗, M∗, I ∗

H , andR∗) that minimize
J (v(t), φ(t)) over �. Furthermore, there exist adjoint
functions,λi , (i � 1, 2, 3, ..., 8) such that:

dλ1

dt
� λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2 + v(t)

)

− λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)
− λ8v(t),

dλ2

dt
� −λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2 + (α + σ)

)
− λ3α − λ4kσ − λ5(1 − k)σ ,

dλ3

dt
� −λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2 + μ

)

+ λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)
+ λ3(μ + η) − λ7η,

dλ4

dt
� −w1 + λ1

(
c1β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

− λ2

(
c1β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ4(ω + εA) − λ7ω − λ8εA,

dλ5

dt
� −w2 + λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

− λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ5(q + δI + εI ) − λ6(1 − τ2φ(t))q − λ7τ2φ(t)q − λ8εI ,

dλ6

dt
� −w3 + λ1

(
c2β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

− λ2

(
c2β(1 − ρ1)(1 − ρ2)(1 − τ1)S∗

N∗ − β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ6(θ + δM + εM ) − λ7θ − λ8εM ,

dλ7

dt
� −λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)
+ λ7(γ + δH ) − γ λ8,

dλ8

dt
� −λ1

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)

+ λ2

(
β(1 − ρ1)(1 − ρ2)(1 − τ1)(c1A∗ + I ∗ + c2M∗)S∗

N∗2

)
, (15)

With transversality conditions:

λi
(
t f

) � 0, i � 1, 2, 3, ..., 8 (16)

And

N∗ � S∗ + E∗ + Q∗ + A∗ + I ∗ + M∗ + I ∗
H + R∗
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Fig. 7 Variation of the control strategy of control parameters a v* and b φ*

The following characterization holds:

v∗(t) � min

(
max

(
a1,

1

w4
(λ1 − λ8)S

∗
)
, b1

)
,

φ∗(t) � min

(
max

(
a2,

1

w5
(λ6 − λ7)τ2q I

∗
)
, b2

)
(17)

Proposition 6. Corollary 4.1 of [33] gives the existence of
an optimal control pair (v(t), φ(t)), due to the convexity of
the integrand of J with respect to (v, φ), a priori bounded-
ness of the state solutions, and the local Lipschitz property
of the state system with respect to the state variable.

Proof of Theorem 5. We apply the Pontryagin’s maximum
principle to have:

dλ1

dt
� −∂H

∂S
, λ1

(
t f

) � 0,

dλ2

dt
� −∂H

∂E
, λ2

(
t f

) � 0,

dλ3

dt
� −∂H

∂Q
, λ3

(
t f

) � 0,

dλ4

dt
� −∂H

∂A
, λ4

(
t f

) � 0,

dλ5

dt
� −∂H

∂ I
, λ5

(
t f

) � 0,

dλ6

dt
� − ∂H

∂M
, λ6

(
t f

) � 0,

dλ7

dt
� − ∂H

∂ IH
, λ7

(
t f

) � 0,

dλ8

dt
� −∂H

∂R
, λ8

(
t f

) � 0, (18)

Evaluated at the control pair (v(t), φ(t)), and correspond-
ing states which results in the stated adjoint (15) and (16).

Considering the optimality condition:

∂H

∂v
� 0,

∂H

∂φ
� 0 (19)

And solving for v∗, φ∗, subjected to the state variables, the
characterizations in (15) can be obtained, taking into account
the bounds on the control. By doing this, we have that:

∂H

∂v
� w4v − λ1S + λ8S � 0

⇒ v∗(t) � 1

w4
(λ1 − λ8)S

∗ (20)

On the set {t |a1 < v∗(t) < b1 }. To obtain the optimal
control,φ∗(t), we have that

∂H

∂φ
� w5φ − λ6τ2q I + λ7τ2q I � 0

⇒ φ∗(t) � 1

w5
(λ6 − λ7)τ2q I

∗ (21)

On the set {t |a2 < φ∗(t) < b2 }.
It is observed that the optimality condition (taking deriva-

tives of the Hamiltonian with respect to the controls) only
hold in the interior of the control set.

5.2 Numerical results for themodel with optimal
control

The forward–backward sweep approach, as described in [26],
is used to numerically simulate the optimal control solution.
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Fig. 8 Variation of population in presence and absence of control strategy

The procedures start with a guess on the control variables,
then the state system is solved simultaneously forward in
time, and the guessed control variables and the resulting state
system solutions are fed into the adjoint system, which is
solved backward in time using the transversality conditions.
The controls are then updated using a convex combination
of the prior controls and the characterization value.

Figure 7 showshow theoptimal control parameters,v*and
φ* decreases over time. Figure 7a shows that the vaccination
rate is at its peakwithin the first 30 days, and reduces after the
t � 30 days until at t � 100 days. Similarly, Fig. 7b shows

that, sensitization of the danger of self-medication is at its
peak in the first 60 days and reduces after 60 days until t �
100 days.

Figure 8 depicts the solutions of all state variables with-
out and with optimal control parameter. With the presence
of control parameters, the susceptible, detected and hospi-
talized infectious humans, exposed, quarantined, undetected
asymptomatic infectious humans, undetected symptomatic
infectious humans and humans under self-medication pop-
ulations decrease faster than without control parameters.
Similarly,with the presence of optimal control strategymade,
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Fig. 8 continued

it was observed that the recovered population increases faster
than without optimal control strategy.

6 Conclusion

Mathematical models has continued to be used to study the
transmission dynamics of COVID-19 disease. In this work,
we study the transmission dynamics of the spread of the third

wave of coronavirus without and with optimal control strat-
egy in order to reduce the disease burden. To understand the
effectiveness of the model, first, we studied the disease with-
out optimal control parameters and observe the results. We
then study the disease with two optimal control parameters:
the vaccination rate and rate of sensitization on the danger of
self-medication. These two control parameters are important
as it helps the population to understand the importance of vac-
cination against the disease and the danger of self-medication
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for infected people. Each of the models (i.e., without and
with optimal control) was theoretically analyzed, the model
was then fitted to data obtained from Nigerian authority per-
taining to the scourge of the disease, this was followed by
obtaining numerical results.

The findings from this work are:

(1) The model without optimal control strategy was found
to be locally asymptotically stable when the reproduc-
tion number is less than unity, meaning that the disease
can be effectively controlled with the necessary and suf-
ficient condition R0 < 1.

(2) When the model was reformulated with two control
parameters incorporated into it and implemented, the
number of infected populations decreases faster and
there is increase in the recovered population, thereby
ensuring that the COVID-19 disease can be managed
effectively, such that the reproduction number will be
kept within tolerable threshold..

(3) Through sensitivity analysis conducted on the basic
parameters in the model, we identify significant param-
eters that drive the transmission dynamic of the disease
and can impact the reproduction number significantly,
thereby reducing the disease transmission burden. This
will be useful for policy makers in formulation of poli-
cies to combat and control the spread of the disease.

(4) The incorporation of optimal control parameters into the
model leads to significant impact on the curtailment of
the spread of the disease. However, the success of these
strategies rely on proper and effective implementation
of these optimal control strategies. Here, we focus on
two important control strategies: the vaccination rate
and rate of sensitization of masses on the danger of self-
medication.

However, in future work, other optimal control strategies
can be incorporated and implemented as well into modeling
COVID-19.
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